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Abstract. We report the current development of a numerical solution of the differential equations
governing  the  orbital  and  rotational  motion  of  the  Moon  carried  out  at  SYRTE  in  Paris
Observatory by POLAC. This numerical solution will serve two main purposes. The first one is to
enable tests of  General Relativity  (GR) with Lunar Laser Ranging (LLR) data at POLAC. The
second one is to improve the existing semi-analytical solutions of Moon motion, namely the ELP
ephemeris (Ephéméride Lunaire Parisienne) for the Moon orbital motion and the Lunar libration
model of M. Moons for the Moon rotational motion.

1 – Introduction.

Nowadays, LLR is the most accurate method to measure the Earth-Moon distance. The observable
is a normal point based on several round-trip light times between their emission by a LLR station,
their reflection by one of the retro-reflectors on the surface of the Moon and their detection back on
Earth. Although the current internal precision of each LLR measurement is sub-centimetric, their
link to the Earth-Moon distance by the current LLR reduction processing is performed within a few
centimeters  of  accuracy.  The  very  high  quality  of  LLR  measurements  (over  the  distance,  it
represents  a  fractional  accuracy  of  one  part  over  1011)  led  scientists  to  improve  theories  of
fundamental and gravitational physics. To put this into perspective, the most important periodic
term over the Earth-Moon distance is due to the relativistic interaction between the ponctual masses
of the Moon and the Earth which reaches an amplitude of 1 m, widely above the sub-centimetric
precision. Therefore, LLR can provide a very good test for GR (see [12] for a non-exhaustive list of
possible tests). In order to enable GR tests at POLAC, a new numerical solution for the orbital and
rotational motion of the Moon has been implemented and will be fit on real LLR data for different
theories of gravitation. 

In section 2, we introduce the mathematical modeling of the orbital and rotational motion of
the Moon and bodies in the Solar System as well as their numerical integration. In section 3, this
numerical  solution  is  compared  with  the  INPOP10e Moon's  ephemeris.  In  the  last  section  we
present  the  ongoing  work  concerning  tests  of  alternative  theories  of  gravitation  and  the
improvement of ELP.

2 – The mathematical model and its numerical integrated solution.

Our  mathematical  model  is  based  on  the  dynamical  equations  governing  the  orbital  and  the
rotational motion of the planets, the Sun, the Moon, Pluto and 50 of the biggest asteroids including
contributions from point-mass interactions, figure effects, tides and Lunar physical librations. Each
contribution  is  described in  the  following.  Our solution  consists  of  calculating  numerically  the



positions  and  velocities  of  Solar  System  bodies  as  well  as  the  Moon  libration  angles.  These
integrations are achieved thanks to ODEX integrator [7] in quadruple precision. The numerical error
has been evaluated to 11 μm on the Earth-Moon distance over a timespan of 100 years with a 10−20

error tolerance.

2.1 – Point-mass interactions.
The numerical  integration  is  made  in  the  International  Celestial  Reference  Frame (ICRF).  The
origin of our frame is centered at the Solar System Barycenter (SSB) and has no relative rotation
with distant extragalactic sources like quasars. The position and velocity of the SSB are fixed at the
origin of the frame at the beginning of the integration, using the invariant mass/energy quantity of
the n-body metric [3]. Then, using a Parametrized Post Newtonian (PPN) n-body metric we deduce
accelerations at the relativistic order O(c-4) [10, 14] due to the mutual interactions between all the
point-mass bodies. 

2.2 – Figure potential.
The Moon, the Sun and the Earth can not be considered only as point-mass bodies because the
contribution of their figure potential leads to an additional acceleration, above the centimeter level,
on  the  orbital  motion  of  bodies.  From the  formulation  of  Kaula  (see  [9]  Eq.  (1.31)),  we  use
spherical harmonics to describe their figure potential.  We consider an expansion up to degree 4 in
zonal harmonic for the Earth, up to degree 4 in zonal, sectoral and tesseral harmonic for the Moon
and degree 2 in zonal harmonic for the Sun. As we are computing accelerations in ICRF frame, we
need to orientate the Earth, the Sun  and the Moon in this frame. The Earth orientation is forced
through a precession/nutation modeling based on the IAU-routines of  Standards Of Fundamental
Astronomy (SOFA) [15]. The orientation of the Sun is fixed relative to ICRF [4]. Finally for the
Moon, we integrate its rotational equations of motion, as described in section 2.4.

2.3 – Tides and spin.
For  an  accurate  computation  of  the  orbital  motion  of  the  Moon,  we  need  a  higher  degree  of
modeling. Indeed, since the Earth and the Moon are close to each other and their rotational motion
are fast,  we have to take into account distortions raised upon these two extended bodies. These
distortions lead to an additional acceleration on the orbital motion of bodies. The distortions are
from two kinds. The most important one is caused by tidal effects, because of the presence of other
point-mass bodies. The second one is the spin distortion caused by the variation of the angular
velocity vector of the extended body. This one is only computed for the Moon, since orientation of
Earth is forced as seen in section 2.2. 

In both case, to get a more accurate modeling, distortions are evaluated considering anelastic
bodies. Since anelastic body does not react immediately to a perturbation, there is a time-delay in its
reaction because of friction inside it,  leading to dissipation. Therefore, to take into account this
dissipation for tides, we introduce a phase lag between the position of a perturber and the direction
of the tidal bulge. For the spin velocity vector, dissipation is considered computing the angular
velocity vector at time t minus the time delay. 

Then, in our software, distortions induce variations in second degree harmonics of extended
bodies. Subsequently, the impact of extended bodies on the orbital motion of point-mass body is
computed with the figure potential formalism described in section 2.2.



2.4 – Lunar librations.
We orientate the Moon with respect to the ICRF with three Euler angles. Therefore, to integrate
their  evolution,  it  is  necessary  to  compute  their  acceleration  which  is  given  thanks  to  Euler's
equation of motion. It relates the change in Moon angular velocity vector depending on Moon total
moment inertia tensor, as well as external torques acting on the Moon. The Moon total moment
inertia tensor is time varying since second degree harmonics of the Moon are time varying as well
(see  §2.3).  On  the  other  hand,  external  torques  acting  upon  the  Moon  are  from  different
contributions. First of all, we have implemented torque due to all point-masses, except asteroids,
interacting with Moon figure. Secondly, we introduce momentum due to interaction of the figure of
the Earth with the figure of the Moon [5]. Finally, we compute the geodetic precession effect upon
the Moon orientation, which is given by [13].

3 – Comparison to INPOP10e.

We compare our computation describing the orbital and rotational Moon motion with INPOP10e
numerical solution [6, 11].  The aim of this comparison is to validate all the steps of our model
implementation.  Currently,  the  two dynamical  models  are  close  except  three  main  differences.
Firstly,  in  our  model,  the  orientation  of  Earth  is  forced  whereas  it  is  integrated  in  INPOP10e.
Secondly, we integrate the position and velocity of the 50 biggest asteroids, while the position and
velocity of 300 asteroids are computed in INPOP10e. Thirdly, INPOP10e takes into account a flat
ring in order to model the remaining asteroids of the main belt which is not taken into account in
our  model.  Integrations  have  been  computed  over  200  years  centered  on  J2000  without  any
adjustment,  using  the  physical  parameters  and the  initial  conditions  provided  by INPOP10e at
J2000. 

The left panel of figure 1 shows the differences between our numerical solution and the one
of  INPOP10e,  for  the  Earth-Moon  distance  as  a  function  of  time.  The  right  panel  shows  the
distribution of these differences around its mean value. 

Figure 1. On the left side plot is shown differences (in cm) between our solution and INPOP10e for the Earth
Moon distance. X axis is TDB time expressed in years from J2000. Distribution of theses differences around
the mean value are plotted on the right side plot.

Figure 2 represents these differences for the six lunar Keplerian elements and figure 3 shows
the differences for the three lunar Euler angles and their time derivatives. All the amplitudes of
these differences are entirely compatible with the differences between the two models described
above. It validates our current implementation and integration of our dynamical model. The next
step  in  the  development  of  our  Moon  solution,  will  be  to  fit  initial  conditions  and  physical
parameters with real LLR data.



 

Figure 2. Differences between our solution and INPOP10e for the 6 lunar Keplerian elements. a is the semi
major axis, e is the eccentricity, i is the inclination, ω is the perigee argument, Ω is the longitude of the node
and τ is the time of passing perigee.

Figure 3. On the  left side plot  is shown differences (in mas) between our solution and INPOP10e for the
three Euler angle (Φ,θ,Ψ). On the right side plot is shown differences (in mas/d) for the three Euler angles
time derivatives. X axis is TDB time expressed in years from J2000. 



Conclusion : futures applications.

The model  described above and its  software implementation has been developed for  two main
future applications. The first one concerns fundamental physics and test of GR. The second one
concerns the improvement of ELP semi-analytical theory.

We focus on a  new generation of software that  simulates the observables from a given
space-time generic metric [8]. To do that, computing the equations of motion and time transfer for
light travel time is needed. The equations of motion will be directly computed in the software,
whereas equations for light propagation will be implemented in the LLR reduction software. We use
Post Newtonian (PN) approximation limiting ourselves to first order GR corrections. In the weak
field approximation, gravitation is seen as a perturbation to the flat Minkowskian space. Brumberg
shows (cf. [1] Eq. (2.2.49)) that the equation of motion, as a function of the coordinate time t, can
be expressed only with the gravitational part of the metric tensor, and their derivatives with respect
to  coordinates.  This  flexible  approach  allows  to  perform simulations  in  any  alternative  metric
theories of gravity. The output of this software will provide templates of anomalous residuals that
should show up in real data if the underlying theory of gravity is not GR. Those templates can be
used to give a rough estimation of the constraints on additional parameters involved in alternative
theory of gravity. They also provide signals that can be searched for LLR data aimed at testing
gravitational laws.

ELP is a semi-analytical solution of the dynamical equations governing the motion of Moon
gravity center. This solution is developed since the 70's by M. Chapront-Touzé, J. Chapront and G.
Francou and are still of great interest (e.g. for the study of underlying resonances or to split the
different contributions). The latest solution,  ELP-MPP02 [2], takes into account all effects with
theoretical signal larger than 1 mm over the Earth-Moon vector. The first order of modeling is the
“Main  Problem”  which  corresponds  to  the  case  where  the  Earth,  the  Sun  and  the  Moon  are
considered as  point-masses  with the Sun following a  Keplerian ellipse  around the  Earth-Moon
barycenter.  All  other  effects  are  treated  as  perturbation  to  the  Main  Problem  i.e. planetary
perturbations  (direct  and indirect),  Earth figure,  GR, tide on Earth and Moon figure.  The ELP
solution consists of Poisson series for the geocentric lunar distance, longitude and latitude where
coefficients are  numerical  while  the trigonometric  arguments are  kept  under  literal  form. In its
purely semi-analytical form this solution does not reach millimetric precision. Indeed after a fitting
to INPOP8, the residuals of the differences over 200 years centered at J2000 are 71 cm for the
distance, 1.54 mas for the longitude and 0.56 mas for the latitude. These differences are mainly
explained  by  the  slow  convergence  of  Poisson  series  (in  particular  for  planetary  effects), the
truncation of series during their computation and some implicit physical parameters impossible to
fit or update.

With the help of the software described above, we plan to investigate the origin of these
differences  by  comparing  effect-by-effect  the  ELP semi-analytical  solution  with  the  numerical
solution  of  exactly  the  same theoretical  model.  Then we intend to  reduce  these differences  by
improving the not enough accurate Poisson series or, in  in the case of too slowly convergent series,
replace them by their numerical counterpart numerical.
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